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Here, as in previous examples, a decisive part is played by the mixed space-time para- 

32 meter Nt r' f 
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STABILITY AND ~~ISSIB~lrTY OF DISC~NTI~UITIES IN Tt+E SYSTEMS OF 
EQUATIOM OF TWO-PHASE FILTRATION* 

P.G. HEDRIKOVETSKII and M.V. LUR'E 

To obtain the additional conditions at a discontinuity in the solution of 
the non-convexhyperbolic systems of equations of two-phase filtration with 
an active admixture /l-3/ (**) an approach is proposed that differs from 
the method of vanishing viscosity. The discontinuous solution is consid- 
ered as the limit of solutions of thenon-equilibrium system, when the 
characteristic time for thermodynamic equilibrium to become established 
approaches zero. The admissibility conditions obtained (of the existence 
of a structure) are the same as the equilibrium conditions in Oleinik's 
form /5,6/, and ensure the existence and uniqueness of the selfsimiliar 
solution of the problem of discontinuity disintegration. 

The processes of petroleum displacement by hydrodynamically active fluids is defined by 
systems ofnon-lineardifferential equation of hyperbolic type, as in gas dynamics, for which 
discontinuous solutions are characteristic /7/. The stability of the discontinuity with 

respect to small perturbations is a generally acceptable requirement in the linearized problem 

/8,9/. However, for some non-convexsytems of the equations of gas dynamics and elasticity 
theory, the solution of the problem of discontinuity disintegxation, containing stable discon- 
tinuities is not unique /6,10/. Supplementary conditions at the discontinuity ensuring the 
uniqueness of the solution were obtained either by generalizing the concept of stability, or 
as the limit of the solutions of the corresponding problem in a more comprehensive physical 
theory of "vanishing viscosity" /a--11/. 
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1. Analysis of solutions of the hyperbolic system. The process of two-phase 
filtration of immiscible liquids with an active admixture under conditions of thermodynamic 
equilibxium in the first phase and in sorption state is defined by the system of equaCion 

of phase-mass balance and of admixture-mass balance 

(1.1) 

(1.21 

where x andt are the dimensionless coordinateandtimar S(Z, t) is the saturation of the first- 

phase threshold volume, cfx, t) is the _adm.ixture solution concentration in the first phase, 
a(c) is the concentration of adsorbed admixture Q(O) = 0, a" {c)> 0, F(s, c) is the fraction of 

the first phase in the stream, and F,'CO. 
Let us write the hyperbolic system of quasilinear equations (1.1), (1.2) in Riemann 

invariants. By virtue of the dependence F = F&c) we will consider as the unknowns both 

(6, c), and @, FL In the transformation of the hodograph (s,t) -t [s (z, t),F (2, t)l the character- 

istics of system 

i = F.(s + ay (1.3) 

r--F B U..4t 

become simnple waves 

(1.51 

(1.61 

resapectively. The characteristicsofthe 
families (1.3) and (1.4) will be called 
the c- and s-characteristics, respectively, 
The simple waves of families 11.5) and 
CL.61 will be called s- and c-waves. In 
the plane (s, F) the simple s-waves are 
represented by lines c = con&; these 

Fig.1 
waves are trajectories df the vectorfield 

(1.61. (In Fig.1 the section 
represents the s-wave when c = co, 

so - s, 
aa the section s, -sI represents the c-wave). Hence 

the Riemann invariant that is constant along the o-characteristic is the concentration c = 

c (s, FL and the invariant constant along the characteristic is any function which is constant 
along the trajectories of the vector field (1.6) and varies monotonically from the trajectory 
to trajectory. 

system (l.l), (1.2) has the following types of discontinuity /l/: 

where [Al is the jump of the parameter A, and V is the velocity of the discontinuity. Discon- 
tinuities of types 0.7) and (1.81 are called s- and c-jumps respectively. 
definition of the discontinuity stability of system (l.ll, 

The following 

ity is stable, 
(1.2) is proposed: the discontinu- 

when the total number of characteristics in the zone ahead of the jump with a 
velocity not higher than V, and in the zone behind the jump with velocity not less than V, is 
equal to three. This is one of the possible generalizations of the definition of a wave 
adiabatic compared with the Lax form of the stability criterion /6/. 

2. TWQ solutions of the problem of discontinuity decay. Consider the initial 
system of equations with function a(c), whose graph is shown in Fig.2. 

We will solve the problem of discontinuity decay 

12.3.) 

The solution of this problem describes the process of petroleum displacement by a solu- 
tion of active impurities. The problem has the selfsimilar solution 1*1 s = s 15), c - c ce,, 

*fSee the footnote on p.484. 
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Fig.2 Fig.3 

We will rewrite the initial conditions (2.1) in the form 

s(-oo)=P, c(-cn)=P, s(oo)=s*, C(cQ)=C* 

To construct the solution we shall find c1 and c,such that (Fig.2) 

a' (Cl) =: la (c") - a (c,)l(cO - CJ", 

a' (~1 = [a (cz) - a (c*)l (c* - c*)_' 

(2.2) 

We draw a tangent to the cuxve c = co from the point [-a'(cJ,Oj in the plane (8, 0 
From the point s, where it intersects the curve c =cl we draw the trajectory of the vector 
field (1.6) until it intersects the curve c =c, at the point sS. We connect the points sg 
and [--a'@,), 01 by a section of straight line. We join the point s, where that section inter- 
sects the curve t =c* to the point (s*,c.J fFig.1). 

The solution has the form 

--<<f<o (2.3) 

s(O)=s", e(O)=8 

dF F 
E - -zT- s+a’ ’ 

s(V1) =.5-z, c(V1) =c1 

The solution consists of a section of centered s-wave (SO, c9 - @I, c"), a c-jump (sl, co)-+ 
(.s*, ~3, a section of centered c-wave (s%, cl) - fs,, c&a c-jump (sl, CJ + (~4, c,), a quiescent region, 
s = s~,c +o C,,and an s-jump (%,o&"r(s+, c*) (Fig.11 - Each of the three jumps appearing in the 
solution are Lax stable. The form of solution is shown in Figs.1 and 3 by the solid line. 

To derive the second solution of problem (2.2) we draw from the point (-[a(~?)-a(c,)l.(P- 
c,)"',O} a tangent to the curve c== c" and connect its point of intersection se with the 
curve c =c* to the point (s*, * c ). The solution has the form 

and consists of a section of centred s-wave (s',c')-(s~,t?), a c-jump (ss, CC) * (so* 4. a 
quiescent region s = s,, c = c* , and an s-jump (sdt c,,)-t(s*, c*). Both jumps are Lax stable. 

Thus two stable generalized solutions have been constructed for the problem of discontin- 
uity decay for the system of equations (1.1), (1.2). Both provide a plausible flow picture 
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of petraleum displacement by an active-admixture solution (Fig.3). 

3. Criterion of the admissibility of the discontinuity, we will consider the 
discontinuous solution of system (1.11, (1.2) to be admissible, if it is the limit of solutions 
of a two-phase filtration system with active admixture, taking into account the capillary jump 

of pressure between phases, and the non-equilibriumofthe sorption process 

(3.1) 

da -c--y 
-z- h? ’ a=a@) 

when the characteristic time hz of the establishment in the system of thermodynamic equili- 
brium and the characteristic value hd" of the pressure jump approach zero. In this formula 
y is the admixture equilibrium concentration for which the dissolved admixture is with the 
sorbed admixture, whose current concentration is equal to c, in a state of thermodynamicequili- 
brium, i.e., 4 = a (g) and A (s, c)> 0. Contpared with system (l.l), (1.2) the equation a = a (cf 
of the sorption isotherm is replaced by the equation of sorption kinetics, and in the equation 
of phase-mass balance the "vanishing viscosity" term is added. 

Theorems of the existence and uniqueness of the generalized solution of system (l.l), 
(1.2) do not exist at present. Let us, therefore, clarify how the proposed test of selecting 
the etrue" solution is linked with the conditions of the existence and uniqueness of the 
generalized Cauchy problem for one first-order hyperbolic equation. 

If in system (1.11, (1.2) we set s = F = 1, we obtain the equation of equilibrium of 
sorption from the flow 

-g- [c + Q (cl] + g ==I 0 (3.2) 

If, however, we set s = F =1 in system (3.1), we obtain the system of equations of non- 
equilibrium sorption from the flow /12/ 

~(esa)++o 
a0 -- at 

E--y 
In' a=a(!/) 

(3.3) 

(3.41 

Let us assume that the generalized solution of Eq.(3.2) is the limit ofthesolutions of 
system (3.31, (3.4) as h-+0. At some point (50, to) let the solution (3.2) be discontinuous, 

c (x0 - 0, to) =c~,c(Zo+O,t~)"c+, and let the discontinuity velocity at that point be V. 
We will write the Hugoniot condition at the discontinuity in the solution of the equili- 

brium sorption equation (3.2) 
V = (1 + Iaf*[cl-')-I 

For the system of non-equilibrium sorption equations (3.3), 
at the discontinuity have the form 

(3.4) the Hugoniot conditions 

[c -J- a1.V =Icl, fa1.V = 0 

It follows from them that the discontinuity velocity in system (3.31, (3.4) is equal 
either to zeroor unity. The discontinuity velocity in (3.21 is less than unity. Hence, in 
spite of the fact thatthe non-equilibrium sorption system admits of discontinuous solutions, 
its solution at the point (x0, to) is continuous. Then in a small neighbourhood of the point 
(x0, to), the solution is approximately represented by 

e-, x-z,-v(t-to)<O 
c(x;ttt)= p x_-2o i f - v (t - to) > 0 

We will seekthe solution of system (3.3), 

(so1 to) in the form of a travelling wave 
(3.4) in a small neighbourhood 

c (2, t) = c (f), a (z, 2) = a (E), E = Ix - xo - V(t - t,)l/h 

(3.5) 

of the point 

Substituting these functions into the system, we obtain, taking into account the condi- 
tion for discontinuity admissibility, the boundary value problem 

c(* co) = P, a(* aJ) = a(&) (3.6) 

for the system of ordinary differential equations 

(3.7) 
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If a solution of this boundary value problem exists, then as h-0 it becomes the ais- 
0antSnuws solution (3.5) of Eg.(3,2f. 

Wer integrate (3.7) from -asto 15 taking (3.6finto account 

(c - 6) - V fe - 6 + a - a {c-)1 ~ci 0 (3,9) 

Substituting the function 1/ =II ~(a) the inverse of a =a@), into Eq. (3.8) and, then the 
value of a expressed in terms of c Erom fcrrmula (3.9) 

The boundary value problem (3.6) for Eq.(3.U?) is solvable when and only when 
af the points c-and Cara singular for the vector field f3.10): 
b) the sign of a(c) in the Ibnterval between c- and c' ia the same as that of the remind- 

er (8 - 6) /9/. 
We substitute c = c+ into (3.10). From condition a) we obtaaln 

y (U(K) + (1 - V)(c+-c-)/V ) = c+ 

By virtue of themonotonicftyof the function y(u) wa have 

a (c") I_ (i - F)(c' - c-)/V = 4 (c") 

from whi.ch follows the Hugoniot condition at the discontinuity 43.51 for Eq. (3.2) 

c' - C" = b" it+ + a fc') - c- - a @)I 

Substituting the expression obtained for the discontinuity velocity V into (3.101, flcom 
condition b) we obtain that in the interval between c-and df the sign of expression 

{a (6-f _t fa (e') - 0 (c-)&z* - c-)-'(c - 6) - a (c)j 

is tha same as that of the difference (c+--i)‘ In the plane (c, 51, when c+ < t the cUrve 

a(c) fies in the interval between b and c' abcve the segment that joins the points fc-,a {c-)1 
ati fc*,a(c+)]. These points are nc4ighboUring points of intersection of the curve With the 

segments. Kence the inequality 

a' (c-f g [a (c') - a (c-)l (c' - c-f-"< a' (8) 

holds, ~xom this follows the biecdntinuity-evolution condition (tie discontinuity Fs reach&. 
by two characteristics) 

Hence from the condition for a discontinuity to be admissible the Eugoniot condition, 
the condition for discontinuity evolution, and the ~p~l~~~t~co~t~on at the discontinuity 
follow, when these ccnditions are satisfied, the Cauchy problem for Eq. (3.21 has a general- 
ised solution which is unique, 

Note that for an arbitrary vaaixinear first-order hyperbolic equation 

au aft@__@ -- 
z* as 

by paosing to the "non-linear" system 

we a&~ obtain the conditions that ensure the existence and uniqueness of the generalized 
solW.i0n. For one equation the propcsed approach yields the s&m@ results as the method of 
vanishing viscosity 191. 

tat us find under what conditions the discontinuous solution of system (1.11, (1.2) can 
be obtained as the limit of the solutions of sys;tent f3.11, f~rr this we will analyze the 

behavionr of the solutions oE systexo l3.11 in the neighbourhocd of the point @,tg). System 
(3.3.) admLts of discontinuous solutions with concentration jumps. It follows from the 

Huganiot conditions that the concentration discontinuities in systems Il.1) e <f.ZI and (3.I) 

propagate at different velocities. hence in the neighbourhood of the point (zottof the soLu- 
tion of system (3.1) is generally continuous with appropriate boundary conditions. 

As in the case of one equation , we confine ourselves fn thr? neighbourhood of the pcint; 
of &i&continuity of the solutian af system (l-l), (1.2) 



i 

s-,s-zso-V((t-tcJ<O 
s(=*t)= s+,s-~-v(t--t*)>o 

c (=s $)=I; i 

c-, z - so - v (t - tP) < 0 
c+, 5 - $0 - v (t - $0) > 0 
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(3.11) 

to solutions of system (3.1) in the form of a trsvelliw wave 

c (z* t) = c (&), s(z, i) = S (e), p (z, 4 = s (E) 

Ij = Iz - 20 - v (f - t,)l/h 

we obtain the following boundaryvalue problem: 

s(~oo)=s~,c(rtw)=C*,a(f=4=s(C*) 

for the system of ordinary differential equations 

(3.12) 

--v ++ +d='+[A(s,c)~] .(3.13) 

-V-$- (CS+a)+~(cF)=A"~[cA(s,c)~] (3.14) 

-~-++L., s=s(y) (3.15) 

Since the solution of the boundary value problem (3.12) for system (3.131-13.15) 

approaches the discontinuous solution (3.11) of 5ystem (l.lt, (1.2) aB h+O, the ~~i~t~n~e 
of a continuous solution of the boundary value problem is the condition for the di5continuty 

to be admissible. Below we separate the types of jump5 that have the StXUcture (3.1). It is 
assumed aat non-evolutionary jumps, which have an infinite number of Structures, are not ad- 

missible /a/. 

Theorem. The bu&ay value problem (3.12) has a unique continuous solution when and 

only when 
1) the Hugoniot conditions at the discontinuity (3.11) are satisfied for the 5Ystem of 

laws of conservation (l-l.), (1.2) 

IFI ‘b’=m = WI 
[sl b + fa WI 

(3.16) 

2) in the interval between c-and c* the sign of the expression 

a (c") -I- fallcl-'(c - c") - 5 fc) 

is the same as that of the difference (c+-e-f 
3) The over-all number of characteristics in the zone ahead of the jump at a vd.ocitY not 

higher than V and in the zone behind the jump at a velocity not less than V, is equal to three. 

Proof. Necessity. Id the continuous solution of the boundary value problem (3.12) exist. 
We integrate Eqs.(3.13) and (3.14) form -DO to E taking into account the boundary conditions 

A"A (8, c)$ '=i F - F- - V (S - S-) (3.17) 

A=cA (s,c) $ s cF- c-F- - V [es .+ a -C-S- - = WI (3.18) 

The points [a-,~-, a(~-)] and [s+, c+,a(c+)] 'are singular for system (3.151, (3.171, (3.18). 
Substituting the values C= c+, s= S+ and a= a(~+) into them, we obtain the Hugoniot conditions 
(3.16) from which formulas (1.7) and (&.a) follow. 

Condition 2) has meaning when c-+~+. At the discontinuity condition (1.8) is satisfied. 
We subtract Eq. (3.17) multiplied by c from Eq.(3.18), For C-#~+ we obtain the following 
equation: F- = V[S- + ia - a@-)) (C _ e-)-q. Comparing it with (1.8),, we have 

[Q --a@-)].(e-c-)-‘c [a]*[c]-’ (3.19) 

The Set of points in the plane (~,a) that satisfy this relation lies on the segment con- 
necting the Points (c-,a(~-)) and @+,a(~*)). Substituting the expression for a from (3.19) 
(3.15), and using y=g(a) we obtain 

into 

fa] dc _ Y (Q(c-)+[a].(~-E-)[c]-*) - c 
K'Z-= ?V (3.20) 

As in the case considered above of one hyperbolic equation, the condition for a continuous 
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solution of the boundary value problem for Eq. (3.20) to exist is equivalent to conditions 
a) and b). Condition a) is satisfied. When C-> C+ condition b) for Eq.(3.20) means that 
in the interval (c+, c-) since the function U&J) is monotonic the inequality .z(c-)+[a](~-C-)[c]-I< 

a(c) is satisfied. When c+>c- the inequality sign is reversed. Condition 2) of the 
theorem is satisfied. 

From this we have the inequalities a'(~-)< [a].[~]-‘<a’(~+). Then 

F+ 
s++ a'(c+) d 

F' ,v, F- F' 
s+ + La1 ICI-’ s- + [a] [cl-’ 4 s- + 4’ (c-) 

i.e. the velocity of the c-characteristic in the zone 
aheadofthediscontinuity is not greater than V, and in 
the zone behind it, it is not less than V. Two c- 
characteristics reach the c-jumps. It remains toprove 
that only one c-characteristic reaches the c-jumps. 

Let c- > c+. Depending on the number of of s- 
characteristics reaching the jump from curve c = C- to 
curve C= c+, (various types of jumps can be seen in 
Fig.4)r we have 

v12 = F,' (SIP c-)9 F,’ (9, c+) < 8~ = F,’ (~1. c-) 

F8‘ (su cc) < Vu VW < F,’ (sm c-) 

F,’ (+sv c+) < V,, < F,’ h 4 

where V,j is the velocity of the jump (ai, c-) - (sf. c+). 
Let us assume the opposite, i.e.the discontinuity which is not reached by a single s- 

characteristic, or by two s-characteristics is admissible. Then the discontinuity belongs to 
one of the types (rig.4) 

Let a trajectory exist that links points 4 and 7. Let us consider the system of two 
ordinary differential equations (3.17) and (3.20).in the phase plane (8, c). For the trajec- 
tory considered we have 

s(--oo)=s,, c(-m)=c_, s(oo)=s,, c(ca)=c+ 

Let us consider the behaviour of the system trajectories in the neighbourhood of the 
singular point (8,. c-) . The matrix of the linearized system has two eigenvalues 

hr= w;l(;;‘, v < 0, b = I4 IP - a’ (c-) > (J 
Yr [a] [c]‘a’ (c-) 

to which oorrespond the eigenvectors 

i.e. the singular point (I,.c-) is a saddle point. From the theorem of the behaviour of traject- 
ories near a saddle point /13/ it follows that the required field trajectory is an unsteady 
whisker of the saddle and touches the eigenvector h+ By virtue of condition 2) provedabove, 
c'<O and the motion along the trajectory in the neighbourhood of the singular point is in 
the direction of vector h, when S' >O, i.e., in some neighbourhood of the singular point 
OS’ < 0. 

Let us consider the trajectory pattern in the plane (s,F). Since c'<O, the trajectory 

lies above the straight line F-F,= V(s-s,). Hence, as follows from (3.17), along the whole 
trajectory we have 0'<0. The contradiction obtained shows that a trajectory connecting 
points 4 and 7 does not exist. 

The pairs of points 6 and 5, and 1 and 3 connect an infinite multiplicity of trajector- 
ies, i.e. the respective jumps are not admissible. The case of c-cc+ is considered similar- 

ly. 
Let us consider the s-jumps c-== c+. In the solution of the boundary value problem (3.12) 

for system (3.17). (3.20) we have c(E)= cf. problem (3.12) reduces to the boundary value pro- 

blem s(-OO)=S-,#(+w) -s+ for one equation (3.17). Since the curve F= F(s,c*) has only one point 

of inflection, condition b) for a solution of the boundary value problem to exist for one 

ordinary differential equation, is equivalent to the conditions 

F,’ Is+, c*) < V 6 F,’ (s-r c*) 

i.e. there are two s-characteristic reaching the saturation jumps. 
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Sufficiency. We shall prove that when conditions l)-3) are satisfied, a unique solu- 

tion of the boundary value problem r(*~)=sf,c(fm) =c* exists for system (3.17)-(3.20). 

That solution together with e(r) expressed in (3.19) is the solution of the boundary value 
problem (3.12) for system (3.12)-(3.15). 

From the Hugoniot conditions 1) it follows that the points (s+.c+) and (K,c-) are singular 
in system (3.17), (3.20). Two s-characteristics must reach the s-jumps. This implies con- 

dition b) for Eq. (3.17), when c(&)=c*, i.e., a solution s(E) of the boundary value problem 

a(+~) = P exists. This solution together with c(E)= c* for system (3.17), (3.20) is the 

solution required. 
Let C- + c+. Condition 2) implies condition b) for Eq.(3.20), i.e. a solution of the 

boundary value problem c(-co)= c-, c(m)= c+ exists for it. From condition 2) it also follows 

that the c-characteristic velocity in the zone ahead of the jump is not greater than V and 
in the zone behind the jump it is not less than V. Consequently, it follows from condition 

3) that one s-characteristic reaches the c-jump. The jump belongs to one of the types (Fig. 

4) 
(s; - ss), (s,- G)r (s1- SI) 

The proof that a solution exists for all types of jumps involves investigating the be- 
haviour of system trajectories in the phase plane (a,~). 

Consider the type (So-f,). The matrix of the linearized system in the neighbourhood of 
the point (b,, c+) has two eigenvalues 

h 
1 
= F,’ (4. c+) - v 

A"A (s:, c+) 
>o, h= [aI [cl-’ - 0’ (c+) 

VT [a] [cl-‘a’ (c’) 
< 0 

to which correspond two eigenvectors 

Fe’ b-.i+ cc) 
A'A(s,,c+) ' 

F,’ (8n c’) - I; _ ,al ,cl-x _ a, (c+) 

A'A (I,. c+) Vr[a] [cl-'.o'(c+) 

i.e. the singular point (s,,c+) is a saddle. Consider the steady whisker along which C. < 0. 
We direct f-- 00 along it. Then E-C-. 

It is necessary to prove that s-q. Let us assume the opposite. If v,,< (so + la] [cl-')-'. 
then point 6 is a unique singular point of the system when C= C-. Hence from the above as- 
sumption it follows that the limit of s(E) does not exist as %.- -00. If V,, >(~~+Iallc]-~)-~, 
then for C= C- apart from point 6, one more singular point 4 of the system exists. However, 
as shown above, a continuous trajectory connecting points 4 and 7 does not exist. In this 
case the assumption implies that the limit of s(E) as %- --oo does not exist. Since the 
quantity .Q (f) is limited, it follows from here that it is not monotonic in any neighbourhood 

Ic-c-I<e, i.e. in any such neighbourhood (or %<-N, ) there exist on the trajectory a 
point at which I'= 0. 

Let us consider the pattern of the trajectory in the (8,~) plane. It follows from the 
above that in any neighbourhood of point 6 a point of intersection of the trajectory with the 
straight line F - F(s6, C-)= V(~-s~j exists. 
in any neighbourhood of point 6, 

This means that inthephase plane of the system, 
a point exists that belongs to the trajectory. The matrix 

of the linearized system in the neighbourhood of point 6 has two eigenvalues 

hl= F,‘(%,O- 1: 
A'A (s#, c-) 

i.e. that point is an unstable node. Then the statement that the limit of s(E) does not 
exist as %---a= contradicts the theorem on the behaviour of the trajectories in the 
neighbourhood of the unsteady node /13/. 

It follows from the above reasoning that the trajectory considered here is a unique 
trajectory connecting points 6 and 7. 

The existence and uniqueness of the trajectories linking points 4 and 5, and 1 and 2 
is proved similarly. 

The conditions for the discontinuity to be admissible obtained above are not only neces- 
sary, but also, sufficient to construct the unique selfsimiliar solution of the Riemann 
problem of the decay of an arbitrary discontinuity for the system of equations (1.1) and (1.2). 

In solution (2.3) of the problem of the decay of discontinuity (2.1) all discontinuities 
are admissible (2.4) the jump (s6+sg) is present. The segment 
and [~*,a(~+)1 in the (~,a) plane intersects the curve 

connecting points [c-, a (c-)1 

of the admissibility of the discontinuity (Fig.2). 
a(c), which contradicts condition 2) 

Solution (2.3) is true. 
The criterion obtained for the admissibility of the discontinuity is a well-knowngeneral- 

ization of the concept of a wave adiabatic compared with the condition for the stability of 
the discontinuityinthe Lax form /5,6/. Condition 3) of the theorem is the well-known con- 
dition for the evolution of the discontinuity, which ensures the existence of solution of the 
linearized problem of the interaction of a small perturbation with the discontinuity /8,11/. 



492 

Condition 2) of the theorem is a supplementary condition at the discontinuity obtained as the 
condition for the structure (3.1) to exist. This condition means that the sorption process, 
is undirectional, i.e. that in the neighbowhood of a discontinuity either a sorption process 
at>0 or a desorbtion process at<Ooccurs. Condition 2) of the theorem can be rephrased 
thus: the discontinuity {8-, c-) + (s', c+) is admissible, if the points (.s-, c-f and (s*, c') can be 
connected by-a continuous curve (s,,, c?) on which the Eugoniot conditions for the jump (s-, C-)-L- 
&, c,,) are satisfied, and the velocity V for any n is not less than the velocity Vof the 

jump (s-, c-)+ (s+, c+), i.e. 

vll> v (3.21) 

If condition (3.21) is not satisfied, then in solvingthenon-linearized problem of the 
interaction of the discontinuity with small perturbations an inversion of the perturbation 
front occurs before the perturbation reaches the discontinuity. 

4. Admissibility of a discontinuity in more complicated systems, We can 
now consider a thermodynamically unstable system in order to obtain the conditions for a 
discontinuity of many systems of equations of underground physico-chemical hydro-gasdynamics 
to be admissible. We shall give a few examples. 

The process of two-phase filtration with an active admixture, soluble in both phases, is 
defined by the system of equations of phase-mass balance (1.1) and admixture-mass balance. 

-g I- + 9 (4 (1 - 41 + -& [CF + cp (4 (1 - J-II= 0 (4.1) 

where cp(c)is the equilibrium concentration of admixture in thk second phase. If cp (c) has the 
form shown in Fig.2, problem (2.1) admits of two selfsimilar solutions, when cp(c)is more 
complex it has three or more solutions. 

To obtain the supplementary conditions at the discontinuity we introduce into Eqia.(l.l) 
and (1.2) acapillary pressure jump similar to (3.11, and replace the equation cp = q(c) by 
the equation of the kinetics of the distribution of the admixture among the phases 

(4.2) 

When ~-CO on the discontinuity (3.111 of system (1.11, (4.11 we obtain the Hugoniot 
conditions and the stability conditions. They are equivalent to conditions 1) and 3) of the 
theorem and to equality of the sign of the equilibrium and running concentration go and the 
sign of the difference (c--c+). 

The process of petroleum displacement by a solvent is described by a system of equations 
of two-phase three-component filtration /14/ 

(4.31 

&+w+rp(Cw-S)J+ -&t’Pw+w~-~J=O 
where c and (I are the concentrations of the solvent in the water and petroleumphases, and cp 
and (I, are the concentrations of admixture in the water and petroleum Phases. Changing to the 
unknowns CW = cp(c)s +cp(c) (1 -s) and UW = (p(c)P -I- $((c)(I -F), we obtain 

a (4 -9 (c - u)(cp - W’* B (4 = @ - 9 fc - 4(q, - W’ 
If the form of the function @(a) is that shown in Fig.2, the problem of discontinuity 

decay has two Lax stable selfsimilar solutions. Supplementary conditions at the discontinu- 

ity are obtained by introducing into system (4.3) a capillary jump and taking into account 
the kinetics of the solution process. 

The discontinuity in system (4.3) is admissible, if conditions 1) and 3) of the theorem 

are satisfied and, also, the sign of the difference E-cc is the same as that of the expres- 

sion fi- + [fil(m - u-)[al-l- $ (a). 
For thesystems cohsideredhere the Eugoniot conditions and the stability conditions en- 

sure the existence and uniqueness of a selfsimilar solution of the problem of arbitrary dis- 

continuity decay. The proof of this reduces to the problem of claeshfying the types of 
configurations for an arbitrary discontinuity decay /3/ and to proving the uniqueness for 

each type as in /6/. 

The authors thank L.I. Sedov for his interest, and A.G. Kulikowskii and A.A. Barmin for 

discussing the results. 



1. 

2. 

F 

Ii 

3. 

4. 

5. 

6. 

7. 

8. 

‘AYERS F.J., Some theoretical results concerning the displacement of a viscous oil by a 
hot fluid in a porous medium. J. Fluid Mech. Vo1.13, Pt.1, 1962. 

IIGMATULIN R-I., SURGUCHSV H.L., PEDDROV KM. KHAHEEV N.S. and SHEWSOV V.A., Mathematical 
modelling of the process of micellar-polymer flooding. Dokl. Akad. Nauk SSSR Vo1.255, 

Noel, 1980. 
ISDRIKCWRTSKII P-G., Displacement of petroleum by edgings of solutions of active impurit- 
ies. Dokl. Akad Nauk SSSR, Vol.262, No.1, 1982. 

'OPE G.A., The application of fractional flow theory to enhanced oil recovery. SPE Journal, 
Vo1.20, NO-~, 1980. 

,IW THAI-PING, The Riemann problem for general 2 x 2 Conservation laws. Trans. Amer. Math. 
Sot. Vo1.199, No.472, 1974. 

~OZ~~~SKI~ B.L. and IANENICO N.N., Systems of Quasilinear Equations and Their Applica- 
tion in Gas Dynamics. MQSCOW, NAUKA, 1978. 

ZELXIV L.I., Mechanics of a Continuous Medium. Pergamon Press, Books Nos. 09878, 1965 and 
10994, 1966. 

%RMIN A.A. and KULIKOVSKII A.G., On discontinuous solutions in the mechanics of a contin- 
uous medium. In: Some Problems af the Mechanics of a Continuous Medium. Moscow, Izd. 
MGU 1978. 

ZL'PAND I.M.$ Certain Problems of the theory of quasilinear equations. Uspekhi Matem. 
Nauk, Vo1.14, No.2, 1959. 
UEFERMOS K.N., Quasilinear hyperbolic systems arising from the conservation laws. In: 
Non-linearWaves. Moscow, MIRl 1977. 
BARMIN A.A. and KULIKOVSKII A.G., On shock waves ionizing a gas in the presence of an 
arbitrarily oriented magnetic field. In: Problems of Hydrodynamics and the Mechanics 
of a Continuous Medium. Moosaow, NAUKA, 1969. 

TIKHONOV A.N., Z~OV~S~~ A.A. and ZABHEHINSKII Ia.L., Absorbtion of a gas from a 
stream of air by a granular material layer. Zh. Fiz. Khimii, Vo1.20, No.3, 1946. 

PONTRIAGIN L-S., Ordinary Differential Equations. Pergawm Press, Book No. 09699, 1964. 
BEBRIKOVEFSKII P-G. and FX%RMAN Ia.E., Non-linearwaves in two-phase three-component 
filtration processes. Dokl. Akad. Nauk SSSR Vo1.264, No.1, 1982. 

c 9. 

10. 

11.. 

12. 

13. 
14. 

mm U.S.S.R.,Vol.47,No.4,pp.493-49?,1983 
Printed in Great Britain 

Translated by J.J.D. 

0021-8928,'83 $lO.OO+O.OO 
01984 Pergamon Press IX&, 

UBC 533.6.011.629.7 

ON THE ASYMPTOTIC THEORY OF THE THREE-DIVISIONAL FLOW OF A 
HYPERSONIC STREAM OF ~IATIN~ GAS AROUND A BODY* 

V.N. GOLUHKIN 

The three-dimensional flow of a hyersonic stream of ideal gas round bodies 
of arbitrary thickness allowing for radiation at high temperatures is 
investigated using the method of a thin optically transparent shock layer, 
which is a generalization of the well-known metbod of a thin shock (boundary) 

layer /l/. Using the fundamental property of the gas in the thin shock 
layer, which expresses the conservation of the ratio of the stream compon- 
ent of vorticity along streamlines to the density of the gas /2,3/, an 
analytic solution is obtained of the non-linearprobfemof the flow round 
a body bounded by a surface of zero total curvature. The distribution of 
the radiation heat flux to the body is determined. The effectofradiation 
on the flow of gas is considered, as an example, in the neighbourhood of 
the plane of qumetry of a conical body at the angle of attack. 

The flow of a hypersonic stream of radiating gas round a body for the plane and axisym- 
metric cases has been studied in numerous papers {see /4,.5/ and the bibliography there). 
Recently the first results of a numerical calculation of the three-dimensional hypersonic flow 
of a selectively radiating gas mixture over a blunted body were obtained in /6/. Two-dimen- 
sional flew round bodies was considered in /7,8/ using the method of a thin shock layer /l/. 

*Pxikl.Matem.Mekhan.,Vo1.47,No.4,pp.601-606,1983 


